A higher-dimensional Kurzweil theorem for formal Laurent series over finite fields

نویسندگان

  • Shu-Yi Chen
  • Michael Fuchs
چکیده

In a recent paper, Kim and Nakada proved an analogue of Kurzweil’s theorem for inhomogeneous Diophantine approximation of formal Laurent series over finite fields. Their proof used continued fraction theory and thus cannot be easily extended to simultaneous Diophantine approximation. In this note, we give another proof which works for simultaneous Diophantine approximation as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariance principles for Diophantine approximation of formal Laurent series over a finite base field

In a recent paper, the first and third author proved a central limit theorem for the number of coprime solutions of the diophantine approximation problem for formal Laurent series in the setting of the classical theorem of Khintchine. In this note, we consider a more general setting and show that even an invariance principle holds, thereby improving upon earlier work of the second author. Our r...

متن کامل

An Analogue of a Theorem of Szüsz for Formal Laurent Series over Finite Fields

About 40 years ago, Szüsz proved an extension of the wellknown Gauss-Kuzmin theorem. This result played a crucial role in several subsequent papers (for instance papers due to Szüsz, Philipp, and the author). In this note, we provide an analogue in the field of formal Laurent series and outline applications to the metric theory of continued fractions and to the metric theory of diophantine appr...

متن کامل

On Kurzweil’s 0-1 Law in Inhomogeneous Diophantine Approximation

We give a sufficient and necessary condition such that for almost all s ∈ R ‖nθ − s‖ < ψ(n) for infinitely many n ∈ N, where θ is fixed and ψ(n) is a positive, non-increasing sequence. This improves upon an old result of Kurzweil and contains several previous results as special cases: two theorems of Kurzweil, a theorem of Tseng and a recent result of the second author. Moreover, we also discus...

متن کامل

Beta-expansion and continued fraction expansion over formal Laurent series

Let x ∈ I be an irrational element and n 1, where I is the unit disc in the field of formal Laurent series F((X−1)), we denote by kn(x) the number of exact partial quotients in continued fraction expansion of x, given by the first n digits in the β-expansion of x, both expansions are based on F((X−1)). We obtain that lim inf n→+∞ kn(x) n = degβ 2Q∗(x) , lim sup n→+∞ kn(x) n = degβ 2Q∗(x) , wher...

متن کامل

Badly approximable systems of linear forms over a field of formal series par Simon KRISTENSEN

We prove that the Hausdorff dimension of the set of badly approximable systems of m linear forms in n variables over the field of Laurent series with coefficients from a finite field is maximal. This is an analogue of Schmidt’s multi-dimensional generalisation of Jarńık’s Theorem on badly approximable numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Finite Fields and Their Applications

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2012